神经网络-LeNet

news/2024/12/25 8:51:37 标签: 神经网络, 人工智能, 深度学习, 机器学习

 LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。

 

在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由于缺乏大量数据和计算机硬件资源限制,导致LeNet的表现并不理想。

LeNet网络结构

LeNet的构成很简单,包括了基础的卷积层、池化层和全连接层,原始的LeNet使用的是灰度图像,下面示例中使用彩色图像进行说明,不影响网络的理解。

  • 定义网络层

# 定义网络
class LeNet(nn.Module):                    #继承来着nn.Module的父类
    def __init__(self):  
        # 初始化网络
        #super()继承父类的构造函数,多继承需用到super函数
        super(LeNet, self).__init__()
        
        # 定义卷积层,[深度,卷积核数,卷积核大小]
        self.conv1 = nn.Conv2d(3, 16, 5)
        # 最大池化,[核大小,步长]
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        # 全连接层
        self.fc1 = nn.Linear(32*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        # 根据训练项目,调整类别数
        self.fc3 = nn.Linear(84, 10)
                                     #图像参数变化
    def forward(self, x):            # input(3, 32, 32)        
        x = F.relu(self.conv1(x))    #output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)
        return x

网络结构如下,下面将对每一层做一个介绍:

 网络中feature map的变化大致如下:

 

LeNet实例应用

  • 数据预处理

# 对数据进行预处理
transform = transforms.Compose(
    [
        # 将输入的 numpy.ndarry[h*w*c]转变为[c*h*w],像素点值从[0,255],标准化为[0,1]
        transforms.ToTensor(),
        # 将数据进行标注化
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ]
)
  • 数据读取

如果是初次使用CIFAR,需要将download打开,也可以自行通过其他方式进行下载。

# 读取数据-训练集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36, shuffle=False, num_workers=0)
  • 定义网络

通过LeNet中的介绍,完成网络的定义。

  • 定义损失函数和优化器

pytorch支持很多损失函数和优化器,可以根据需要进行设定

# 定义损失函数
loss_function = nn.CrossEntropyLoss()

# 定义优化器
optimizer = optim.Adam(net.parameters(), lr=0.001)
  • 模型训练

# 开始训练,设置迭代轮次 epoch
for epoch in range(3):
    # 损失函数值
    running_loss = 0.0
    
    for step, data in enumerate(train_loader, start=0):
        inputs, labels = data
        
        # 清除梯度累加值
        optimizer.zero_grad()
        
        outputs = net(inputs.to(device))
        # 计算损失值
        loss = loss_function(outputs, labels.to(device))
        # 计算梯度
        loss.backward()
        # 参数更新
        optimizer.step()
        
        # 输出损失值
        running_loss += loss.item()
        if step % 500 == 499:
            with torch.no_grad():
                outputs = net(val_image.to(device))
                # 输出最大概率
                predict_y = torch.max(outputs, dim=1)[1]
                accuracy = (predict_y == val_label.to(device)).sum().item() / val_label.size(0)
                
                print('[%d, %5d] train_Loss:%.3f tese_accuracy: %.3f' % (epoch + 1, step + 1, running_loss/500, accuracy))
                running_loss = 0.0
                
print('train finished')
  • 保存模型

# 保存模型
save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)

补充

  • Pytorch中tensor的顺序是:[batch, channel, height, width]

  • 卷积层中计算输出大小

 

  • W表示输入图像的Weight,一般Weight=hight

  • F表示核的大小,核大小一般为F * F

  • P表示Padding,Conv2d中默认是0

  • S表示步长

因此对于32*32的输入,在该网络中Output=(32-5+2*0)/1 +1 = 28

  • 池化层只改变特征的高和宽,不改变深度

因此对于16*28*28,经过MaxPooling后变成了16*14*14


http://www.niftyadmin.cn/n/5798905.html

相关文章

QT--信号与槽机制

什么是信号与槽? 在 Qt 中,信号与槽是一种用于对象间通信的机制。它使得一个对象可以通知其他对象某个事件的发生,而不需要直接知道这些对象的具体实现。这种机制非常适合事件驱动的编程模型,如用户界面交互。 1. 信号&#xff…

停车管理系统:构建安全、便捷的停车环境

Tomcat 简介 只要学习Java Web项目就不得不学习Tomcat。Tomcat是一种免费的开源的一种Java Web项目的容器,完美继承了 Apache服务器的特性,并且里面添加可以自动化运行的Java Web组件,让Java Web项目可以完全的运行到Tomcat里面。对于特大型项…

iDP3复现代码数据预处理全流程(二)——vis_dataset.py

vis_dataset.py 主要作用在于点云数据的可视化,并可以做一些简单的预处理 关键参数基本都在 vis_dataset.sh 中定义了,需要改动的仅以下两点: 1. 点云图像保存位置,因为 dataset_path 被设置为了绝对路径,因此需要相…

基于SSM(Spring + Spring MVC + MyBatis)框架搭建一个病人跟踪信息管理系统

基于SSM(Spring Spring MVC MyBatis)框架搭建一个病人治疗跟踪信息系统是一个相对复杂的项目,涉及到多个模块和功能。以下是一个简要的指导步骤。 1. 环境准备 开发环境:确保安装了Java Development Kit (JDK),建议…

分布式专题(10)之ShardingSphere分库分表实战指南

一、ShardingSphere产品介绍 Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。Apache ShardingSphere 设计哲学为 Database Plus,旨在…

git Force Push失败:unable to access解决方案

git Force Push失败:unable to access 项目场景:问题描述原因分析:解决方案:1、访问github远程仓库,更新推送规则1、打开代码库,点击settings2、在settings中下翻,在Danger Zone中将点击Disable…

信息安全技术——物理环境与设备安全、虚拟专用网

物理环境与设备安全 物理安全和设备安全 物理安全风险主要指由于周边环境和物理特性引起的设备和线路的不可用,而造成系统的不可用。 例如:设备被盗、设备老化、意外故障、无线电磁辐射泄密等。 设备安全包含防盗,容灾等内容 机房物理位置…

Mac系统下 idea运行maven项目中存在的问题BeanDefinitionStoreException

1.在进行 注解XML 方式整合三层架构事出现此问题 org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: file [/Volumes/PS2000/Java/SpringProject/micro-shop/spring-annotation-practice-03/target/classes/com/ja…